skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dylan Sonett, Tanya Brown"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The microbiomes of tropical corals are actively studied using 16S rRNA gene amplicons to understand microbial roles in coral health, metabolism, and disease resistance. However, due to the prokaryotic origins of mitochondria, primers targeting bacterial and archaeal 16S rRNA genes may also amplify homologous 12S mitochondrial rRNA genes from the host coral, associated microbial eukaryotes, and encrusting organisms. Standard microbial bioinformatics pipelines attempt to identify and remove these sequences by comparing them to reference taxonomies. However, commonly used tools have severely under-annotated mitochondrial sequences in 1440 coral microbiomes from the Global Coral Microbiome Project, preventing annotation of over 95% of reads in some samples. This issue persists when using Greengenes or SILVA prokaryotic reference taxonomies, and in other hosts, including 16S studies of vertebrates, and of marine sponges. Worse, mitochondrial under-annotation varies between coral families and across coral compartments, biasing comparisons of  - and  -diversity. By supplementing existing reference taxonomies with over 3000 animal mitochondrial rRNA gene sequences, we resolved roughly 97% of unique unclassified sequences as mitochondrial. These additional sequences did not cause a false elevation in mitochondrial annotations in mock communities with known compositions. We recommend using these extended taxonomies for coral microbiome analysis and whenever eukaryotic contamination may be a concern. 
    more » « less